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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1373

ON FORCE-DEFLECTION DIAGRAMS OF AIRPLANE

SHOCK ABSORBER STRUTS

FIRST PARTIAL REPORT - COMPARISON OF DIAGRAMS
WITH LINEAR AND QUADRATIC DAMPING*

By K. Schlaefke

Summary: The investigations - in an earlier publication - con-
cerning force-deflection diagrams of airplane shock-absorber struts with
linear damping are repeated with the assumption that the damping be pro-
portional to the square of the spring-compression velocity. The dia-
grams with quadratic damping essentially differ from those with linear
damping. The comparison with drop-hammer diagrams that had been plotted
shows that the damping actually depends linearly, or at least almost
linearly, on the spring-compression velocity.

The unsolved problems in undercarriage construction are still so
numerous that, like a hydra, from each problem that has been solved,
two new ones grow out. Thus my present investigation is an outgrowth
of a previous report (ref. 1) on the comparison of "buffered" shocks
with "unbuffered shocks"; however, it encompasses only a single addi-
tional problem. On the other questions that arose I hope to report in
sequence later on.l

The present investigation thus repeats the considerations reported
in said treatise with the difference that here a damping is assumed
which 1s proportional to the square of the spring compression velocity,
while there we dealt with linear damping. While I have found no direct
reference in the literature as regards to the type of damping expectable
in airplane spring struts, personal experiences and oral communications
from outside sources would indicate that the linear damping was set up
mainly with respect to mathematical treatment and only as a second
thought with respect to physical correctness. Thus the calculatory
treatment of double-springings, such as spring struts with quadratic
damping and tires, offers insurmountable difficulties, whereas with
linear damping an exact mathematical treatment is possible (ref. 2).

*'Zur Kenntnis der Kraftwegdiagramme von Flugzeugfederbeinen,

1. Teilbericht: Vergleich von Diagrammen mit linearer und quadratischer
Dimpfung." Technische Berichte, Bd. 11, Heft 2, Feb. 15, 194k, pp. 51-53.

INACA editor's note: Subsequent papers in this series are included
in this translation as Second and Third Partial Reports.
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In the following, therefore, the force-deflection diagram with gquad-
ratic damping shall be compared with linear damping in order to gain a

perspective of the physical relationships therein.

The energy equation for the first spring shock (using the same
assumptions and designations of the previous report) is

d/\P af

f (Pv + of + k2v2) af

%‘yoz - v2> + (Mg - L)f

From equation (1) with
N

one obtains, after differentiation with respect to f

a(+?) + h‘”?z v + 20°f - 2ga = 0

(1)

(2)

(3a)

(3p)

af
or
2
) | yo0? 4 2(y - @) = 0
ay
The general solution (ref. 3) of the differential equation (3b)
reads

¢2 = Ae=OV 4 By + C

(%)




NACA ™ 1375 ‘ I-3

When inserting the solution (4) into the initial equation (3b) we
obtain
Ae =0V 'K- S + h«sé_ + \y(lwe}s + 2} + (B + 495C - 2(1,) =0 (5)

The parentheses must disappear if equation (5) should be fulfilled for
every value of V. Thus is obtained

2
5 = hﬂg
= -
B 2%o } (6)
c=_1_(1+;>
2395 hﬁa
-

The constant A 1is derived from the initial condition

¢2(¢=0) = @02 ' (7)
as
- 0.2 - . L 8
A= % 2132(a+1+82> (&)
With equations (6) and (8), the solution (4) is written in final
form .

o (2 1 . a\\_-Mov 1 1({ .1
¢ = (q’o 2«92(“ * ha2)>e 55, ¥ T 205\ T Bop (9)

When setting approximately

e'b'ﬁ?w ~ 1 (10)




1k NACA ™ 1373

which is permissible for low dampings, we obtain

2 np . 1 (11
< = 9q 552 ¥ )
and with
2
0 = - 12
Po —1—282 Vg (12)
finally
92 ~ 92 (1 - %) (13)
g

Thus, for not too great dampings, the square of the spring compres-
sion velocity decreases linearly with the spring stroke.

In order to determine the maximum deflection Vg s @2 =0 is
inserted into equation (9), and thus obtain

i} 2\ 2 _ 1 \N\oHov, _
Vg (u.+ 2{)2) (262% (a,+ lhs2>>e g=0 (14)

an equation which may be solved by trial only.

The maximum spring stroke may be determined with another method of
approach as well.

¥ 2
J=fngw=?-g—+wg(1-x) (15)
0

When calculating the integral, we obtain

g ]
T = 2
f¢ (o'+\|l+2132q>>d\1r—1|rg<o+q+__ﬂ>+

1
29,9 2 . <é + ———>
2%0 49
- 1 (1 - e‘”"e‘l’g> (16)
1#132
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According to equation (2)

o+a=1-n (17)

and therewith one obtains, equating equations (15) and (16), likewise
equation (14).

As already established in equation (16), the force S 1is

P Py +cf + kyv2
Mg Mg

S = =0+ ¥ + 2002 (18)

The maximum value Sg is obtained by a zero-setting of the differential
quotient. We then have

as_, + 232¢1§E32> =0 (19)
dy dy /g
or
<d(<P2 > N U (20)
ay /x 292

When inserting equation (20) into equation (3b), we obtain

9,2 = i(@ - (¥x - )) (21)

_l—-(i - (e - “)> - 2N By, 4 (22)
2

or, according to equation (6), in general

=1 {1 _ -
By + C = 262(“2 (v a)> (23)
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to the condition

ne®¥x - o (2k)

This implies that S steadily increases further with ¢ and finally
reaches its optimum for ¢ = «. For that reason the highest value of
S 1is expectable in the force-deflection diagram at ¢ = Wg: or f = fg,

respectively. Thus we have

Sg =0+ Vg (25)
Finally, the springing effectiveness 1w 1is given by the equation
@o2

e ] -
_ 2Vg A

0‘+\llg

n (26)

The component of the force S caused by damping is, according to
equation (18)

, 2Do
2\\ -=0y 2
- 5302 = 22\ 5ok o
D = 29,0° = (DO - (a + 5%6 le PO - ¥ + o + 556 (27)

when the damping force at the start of the spring shock is expressed
thus:

Dy = 29,97 (28)

From equation (27), a = O, that is, A + o = 1, a variation of the
damping force D is obtained as shown in figure 1. It is seen that,
for finite values of the damping also, the course of D as function
of ¥ does not depart essentially from a straight line. With the
assumption that

2
DO—<a+q%O>=O (29)
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or

P02 o2
Do = Dpcrit = % + %J'GT (30)

no

D as a function of the spring stroke is exactly a straight line for
which the equation reads

D = Docrit, - ¥ (31)
For o= 0 this occurs for DOcrit = q—;Q\]E as is shown by the line for

Dp=5 and q;o2 = 50. When Dg < Dyerits the damping curve is concave
toward the coordinate origin (DO =1 and 2, q)oz = 10 and 50) If
Do > Dgcrits then the curve is bent toward the zero-point (DO =5,

%0 = 10}

From equations (14) and (28) we obtain, with cp02 = 50 as well as
with o0 =0 and A =1, that is, o = O, the variation of Vg as a
function of the initial force Dg, as shown in figure 2. The.latter

serves as a foundation for plotting'the force-deflection diagrams of
figure 3.

Corresponding to the linear damping expectable with airplane spring
struts, we obtain with ch2 =5 and 9 = 0.25, from my previous report

(ref. 1, egs. (13a), (17a), and (20))

ﬁ
Vg1 = 5:0313

¥y = h.325 ' (32)
Sg1 = 5:7325

The diagram q plotted for linear damping was made with the sabove
values. As a comparison therewith were shown the three diagrams a, b,
and ¢ for quadratic damping.

Diagram a shows the same maximum force Sg as the diagram 4,

whereas diagram b begins with the same damping force Dg. Finally, dia-

gram c¢ has the same maximum spring stroke as diagram 4. In figure 2,
the points defining the relationship between Vg and D0 are indexed

with the letters of the diagram.
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T»us, the form of the force-deflection diagrams with quadratic
damping is essentially different from those of linear damping. The dia-
grams obtained in drop tests, however, have a similar appearance as dia-
gram 4, from which we may conclude that the actual damping of airplane
spring struts is exactly, or at least very nearly, proportional to the
spring compression velocity.

According to this understanding the quadratic damping thus has
probably not too great a practical importance and it has been found suffi-
cient to calculate further on with the compression spring velocity course
as was given in equation (13).

For unchanged energy absorption then the approximation value Wgn

is derived from the equation

& Vgn = —— * Ven(L - A) (33)

as follows

N I

The error, introduced by calculating with equation (34) instead of the
exact equation (14), is illustrated in figure 4. Here we see that for
mild damping (DO < 3.5) and for @g > 3 corresponding to the system
constants of larger aircraft (ref. 1, p. 131), the error remains below
4 percent. For this reason we may calculate from here on without any
objections with the approximation formula (34).

The characteristic chart of the following diagrams with linear
damping are taken from the oft-mentioned prior report (ref. 1), whereby
97 = 0.2 was chosen. Identical energy absorption assumes, according
to equation (15), with equal shock velocity v also equal maximum

spring strokes, so long as X # 1, that is, as long as the weight cancel-
lation (by 1ift) is incomplete. With full weight cancellation \=1),
however, various comparison diagrams may be found with quadratic damping,
as shown in figure 3. In the following, with full weight cancellation,
identical maximum forces are presupposed.
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When establishing that

(35)
Q'DO = DOZ/DO]_’ Qn = 1]2/1]1

- wherein the subscript 1 relates to linear damping and subseript 2 to
quadratic damping, figure 5 is given with a complete lack of weight

cancellation, whereas figure 6 is given for full weight cancellation.

The solid line curves relate to nonpreloaded spring struts and the broken

line curves relate to a breloading equal to the static load.

Thus, for A = 0, the spring strokes are identical for both damping
laws, whereas in the practical region of ®o the maximum forces with

quadratic demping are 5.5 to 7.5 percent lower than with linear damping.
The springing effectiveness values Mo are by 6 to 7.5 percent larger

than the springing effectiveness values M-

With full weight cancellation (A = 1, fig. 6) the maximum.spring
strokes Wge are, for equal maximum forces, larger than the spring

strokes wgl by approximately 10 percent; whereas the springing effec-

tiveness values are, with quadratic damping, on the average 10 percent
below those with linear damping.

The initial damping Dy, becomes at o =1 for ¢, = 1.48, equal

to zero (point a) so that the course of the curves for values @ < 1.48
has no more practical meaning. Thus the @Qn-curve ends.ln point b.
For smaller values of ¢,, a comparison is no more possible for known

reasons (ref. 1); this is, however, of no consequence.

When, in conclusion, figs. 5 and 6 are viewed sgain, it may be seen
that the realization of a quadratic damping law would offer no advantages
over the linear damping. One should be therefore satisfied with the
fact that in airplane siruts with fluid damping Fhe damping generally
depends linearly on the spring compression velocity.

The next partial report, possibly even a third one, shal} be devoted
to the investigation of force-deflection diagrams wity a nonlinear
springing characteristic and linear or quadratic damping.

Translated by John Perl
Lockheed Aircraft Corp.
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Figure 2.- Relationship between maximum spring stroke and initial
damping (example).
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Figure 3.- Comparison of three diagrams of quadratic damping (a, b, and c),
with a diagram of linear damping (d).
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Figure 4.- Accuracy of the approximation formula 34 compared to the
exact formula 14,
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Figures 5 and 6.- Comparison of the maximum forces, greatest spring
strokes, springing effectivenesses, and initial dampings with quadratic
damping, with the same values in linear damping.
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SECOND PARTTAL REPORT - APPROXIMATION METHOD FOR THE CALCULATION
OF FORCE-DEFLECTION DIAGRAMS WITH A NONLINEAR SPRING
CHARACTERISTIC AND LINEAR OR QUADRATIC DAMPING¥

By K. Schlaefke

Summary: While undamped nonlinear oscillations on one hand, and
damped harmonic oscillations on the other may be treated with mathe-
matical exactness, one is dependent on an approximation method for the
investigation of damped nonlinear oscillations. In the present report
will be developed two approximation methods, their use described and
critically examined.

Airplane shock-absorber struts, in their most employed form of air-
spring struts with annular oil damping, represent oscillation elements
with nonlinear spring characteristic and velocity-proportional damping.
To the undamped nonlinear oscillations already a number of thorough
investigations (refs. 1, 2, and 3) have been devoted. With the same
thoroughness have been explained the damped harmonic oscillatiens
(refs. 4, 5, and 6). In contrast thereto nothing as yet has been pub-
lished on damped nonlinear oscillations that arise out of the combina-
tion of both above mentioned individual problems. The present investi-.
gation therefore deals with this naturally true oscillation problem.
Whereby the promise, made at the conclusion of the first partial report
(ref. T7), shall be fulfilled.

The calculation of damping-free nonlinear oscillations leads to
elliptical integrals, whereas that of the damped harmonic oscillations
leads to differential equations which cannot be solved quite simply.
With this in both cases the limit is reached for exact mathematical
solutions. For this reason it is easily understood that a combination
of both problems remains from the start, not amenable to exact treatment.
Yet the technical developments require data for construction and test.
Thus we are confronted with the problem to find a useful approximation
method for the calculation of force-deflection diagrams for the first
landing shock of oil-air spring struts.

After a few preliminary trials I have decided on the method described
below in which the force-deflection diagram is subdivided into a greater

*"7Zur Kenntnis der Kraftwegdiagramme von Flugzeugfederbeinen,
2. Teilbericht: Naherungsverfahren zum Berechnen der Kraftwegdiagramme
mit nichtlinearer Federkennlinie und linearer oder quadratischer Dampfung.'
Technische Berichte, Bd. 11, Heft. 4, Apr. 25, 194k, pp. 105-109.

]
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number of such small increments that the spring force as well as damping
force in them may be considered as a straight line with the spring
compression. Then from the energy-balance an equation may be easily
derived for the step-by-step calculation of the diagram.

Figure 1 applies to linear and figure 2 to quadratic damping. The
designations have been already discussed previously (ref. 5) so that at
this time we shall, insofar as danger exists in confusing the linear
with quadratic damping in their appearance side-by-side, designate the
values with linear damping by the subscript 1, and those of quadratic
damping with subscript 2. Then the energy balance for linear damping in
decrement Af; is

Pi1 + P4

M2, - v;®) + Mg(1 - Magy = S Of
Pi-l + Fi + lei

o i

From this equation is obtained

2
Ky Af; k] Afy - Pi_1 + Fy
Vi = - 1 1 + \/( l) + Vi_l - (l—i—l— - Eg(l - X) Afi (2)

M 2M

This is already the formula for the step-by-step calculation of the force
deflection diagram with an arbitrary spring chart approximated by inter-
polation and with linear damping. When a step leads to a complex numerical
value of vy, in which case the expression under the root becomes negative,

calculation is to be made with the formula for the end section. The
latter reads

M _2
5 Vn-1
bfp % =
-1 + Fpo
A -Jn1

= (3)
Ppn-1 + Fp-1 - Mg(1 - \)
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Herein it is approximatively assumed that the mean force P in the end
section is equal to the arithmetic mean of P, 1 and Fp_j; this mean

value is plotted in figures 1 and 2 with a dot and dash line. A desig-
nates the total work g vo2 and Jp.1 denotes the energy absorbed by

the spring strut up to the spring compression fho1-

The energy balance for quadratic damping (fig. 2) is as follows:

2
M/ o 2 Pi—l + Fi + k2Vi
2(v3.1 - vi®) + Me(1 - Moty - L g, (%)
From this is obtained
) P; 1 + F;
Vi_l -(L]“_M__i - 2g(1 - X))Afi
vy = (5)
ko Af5
1 + L_l

M

The section-formula (3) is also valid for quadratic damping.

The application of the formulas shall be shown on an example. For
the construction model Bf109B we have according to Kochanowsky (ref. 8)

c = 29000 kg/m (6)
M = 100 kg s°/m

With this is derived

» = ﬁ = 17.029% 1/s (1)
Furthermore we assume (fig. 3)
Vg = k2 m/s
91 = 0.25 - (8)
ky = 2\/cMyy = 851.5 kg s/m
leO = 3576 kg 4

A straight line characteristic chart was purposely assumed so that the
diagram may be also calculated and thus the accuracy of the approximation
method may be judged.
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Thus is obtained for full weight cancellation (A = 1) from the
formulas of my prior report (ref. 5) the following

fg = 0.1635 m
fx = 0.1380 m (9)
Pg = 5960 kg

The approximation calculation was conducted from f =0 to f = 120 mm
in 6 steps of Af = 20 mm according to the equation

v; = -0.08515 + \/0.00725 + Ve - 0.00020(P; 1 + Fs ) (10)

with which numerical table 1 was obtained.

Since, at f = 120 mm, we have already approached toward the maximum
force P, the steps following are reduced. From f = 120 mm on, calcu-

lation is then made with Af = 4 mm according to the equation

vy = -0.01703 + ,0.00029 + vZ_; - 0.00004(P;_; + Fy) (11)

The citation of the individual values is superfluous, since the calcula-
tion is made basically in the same manner as carried out in the numerical
table 1.

For f = 160 mm is obtained v = 0.755 m/s. The step following
leads to a negative value below the root sign of equation (11), so that
we should calculate with the sectional formula (3) with

Jn-1 = 853.5 mkg
Py_1 = 57T+ kg (12)
Fh.1 = 5130 kg
Then we obtain
. 882 - 853.5 _
Of, % - 0.0052 m (13)

and, consequently, fg = 0.1652 m. Since, according to the discussed
method, the maximum value of the force is given as Pg = 6012 kg (fig. 3),
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the deviation of this from the true value according to equation (9) is
+52 kg = +0.9 percent, whereas the error in the determination of the
maximum spring stroke is +1.7 mm = +1.0 percent. In the example
treated, the accuracy of the approximation method is therefore excellent,
especially when considering that for its completion altogether only

17 steps were calculated for which, inclusive all side-calculations, not
even one-half working day was required.

The approximation calculation with quadratic damping may be made
still faster since in that case the damping curve shows an almost linear
course. Beginning with the same initial damping as with linear damping,
calculation is made from f =0 to f = 160 mm in 8 steps with

Ko = 202.7 kg se/m2 according to the formula

v{ = 0.98033 \[v%_l - 0.00020(P;_1 + F3) (14)

Because the next step to f = 180 mm would lead to a negative value
below the root sign, from f = 160 mm on we use, with

A = 882 mkg
Jp-1 = T81.5 mkg (15)
P,_1 = 5546 kg
F,_y = 5130 kg
the end-section formula (3) from which is obtained
Af, % 0.0188 m (16)

Thus we have fg = 0.1788 m and Py = 5676 kg. In exact calculation one
obtains from the equation (ref. 7, eq. (1%))

Vg - 6.7914 - 3.1460 e 0-13T2¥g _ o (17)

by trial and error, Vg = 5.2629; therefore,
f =5.2629 & = 0.1780 m (18)
g 2

With this we obtain

Py = 491 + 29000 x 0.1780 = 5653 kg (19)
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The approximation calculation for quadratic damping with an error of
+0.8 mm = +0.45 percent in the maximum spring stroke and an error of
+23 kg = +0.41 percent in the maximum force is, therefore, even more
exact than for linear damping.

As a third example for the approximation calculation, a pneumatic
spring strut with linear damping shall be investigated. Said calculation
will employ the following basic wvalues

M = 100 kg s°/m
Fo = 500 kg

k = 1000 kg s/m (20)
vy = 3.8 m/s

A = 722 mkg

The equation for the compressive line reads (with f in mm)

3

F = Foll - f/eoo)'l' (21)

Again 6 steps of Af = 20 mm are calculated from f =0 to f = 120 mm
according to the equation

vi = 0.1 + V/O'Ol + Vi1 - 0.00020(P; 7 + Fy) (22)

and from here on, the succeeding steps with Af = 4 mm are calculated
according to the equation

vi = -0.02 +-V/o.oooh + v,

i . - 0.0000k(P;_; + Fy) (23)

At fp_ 1 = 172 mm the residual calculation now sets in which leads to

Afp n 222 19T 6.00035 mm x 0.4 mm (2k)
%(6709 + 64h2)

Thus, we have fg = 172.4 mm and P8 = 6710 kg. Of the total work

A = 722 mkg, the airstrut absorbs 271 mkg = 37.5 percent while

451 mkg = 62.5 percent dissipated by the oil damping. This distribution
markedly differs from that of figure 3; with a straight-line spring
characteristic the spring absorbs here 53.1 percent of the total energy
and the linear damping 46.9 percent.
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In elaboration of these investigations, the spring compression
time t, 1is also to be determined, which elapses until attainment of
the maximum loading deflection.

Generally the following expression applies

v== or gt =& (25)

fl
by = Jf dr (26)
0

Since this expression becomes indetermined for v = 0, that is, for
fi = fn, its value is found by step-by-step calculation to fp_7 and
exclusive application of a residual formula.

To set up said residual formula, the law for the velocity course in
the last increment must be known or must be assumed. Here is assumed
that for linear, as well as quadratic damping, between fp_, and £y
the velocity decreases per figure 5; this assumption will be more or less
found to correspond to actuality. Then we have

1 Afy

1. (27)
v. vpiVyYITn-T°T
and, with it
f.
ty = tp.1 + YAy +2Afn-2\/Afn(f“'fi)
i = Un-1 v = tn-1 Vn-1 n-1 (28)
fn-1
For f3 = f 1is thus obtained
= +
th = tp-1 Vool (29)

The step-by-step calculation of the oscillation time, for the example
per figure 3, with linear damping, yields t,_ 7 = 0.0646 s, so that with

Afy = 0.0052 m and —L— = 1.3238 s/m, we obtain tp = 0.0784 s. The
Vn-1
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oscillation time +t,, however, is equal T/h when T denotes the oscil-
lation period. This is obtained as

=L 28 - - 0.3811 s (30)

whereas M4t = 0.3136 s. Thus, the value is by 0.0675 s = 17.7 percent
below the true value.

For quadratic damping an error is found of a similar magnitude.

According to Klotter (ref. 1, p. 95) the oscillation period at quadratic
damping is nearly equal to that with complete absence of damping

Tx-i)—n=0.3685 s (31)

In the step-by-step calculation of the time intervals, we arrive at
ty-1 = 0.0561 s so that, with Af, = 0.0188 m and = 0.6982 s/m,

Vn-1
we obtain t, = 0.0823 s. Thus we have here also htn = 0.3292 s which

is, by 10.7 percent of the correct value, too. small.

Although the time determination was made with the greatest care,
the results are unusable. The time may be calculated with sufficient
accuracy then only when the velocity as a function of the spring stroke
is given as a mathematical expression. Arbitrary assumptions will also
lead to great errors even when the assumptions depart very slightly from
reality.

In general, the time is of little interest in drop testing of air-
plane shock struts so that the failure of calculations may not be decried.
This question was aired here for the sole purpose to show that further
activities in this field may be pronounced in advance as futile.

The above treated examples point, with closer scrutiny, to a second
method of approximative calculation of drop tests on which shall be
reported below. Namely, when plotting the dimensionless form v/vo

as a function of f/fg we obtain (see fig. 6) for the linear spring

chart and linear damping curve according to figure 3, in solid lines, and
for the nonlinear case the broken line curve, shown in figure 4. Both
curves run so close together that an attempt was made to replace them
with a single curve and to give the latter general validity. The approxi-
mation curve of the course of the dot-and-dash line follows the law as
shown below.
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v = vo\[1 - £/fg (32)

At first we shall investigate under what condition the above law of
equation (32) is truly fulfilled. The attempt, by series expansion of
the 1n and arc tan expression of the exact solution, to interpret
equation (32) for a linear spring characteristic and linear damping

(see ref. 5, p. 130, eq. (12)) had completely failed. (Trenslator's
remark: Due to a missing comma, the German sentence is difficult of
interpretation. We have done our best in translating the involved
sentence, but recommend caution in accepting it.) When considering only
the first member in both of the series, one already arrives at an equa-
tion of the 3rd degree between v and £, with which nothing can be
undertaken. Irrespective of same, the series development for the arc tan
expressions is unreliable from the start since, per example for ao = O

PoV/1 - 92

9Py - o

and 9 = 0.25, the value = 3.87 is essentially greater than 1.

A second attempt for solving equation (32) starts out with the
differential equation. (See ref. 5, p. 130, eq. (3).)

ae . ¥ -a

av +29 =0 (33)
dav P

When now making the assumption which, at first appears quite arbitrary,
that

2\2 %o

that is, calculating with a direct proportionality between ¥ and ¢
and assuming that the value 9 = 0.25 1is attained at the mean
ratio ¢/¢b = % 2, then this assumption, although distasteful to the

mathematical expert, should nevertheless offer no great practical errors
for medium values of 9:

Equation (33) written with (34) gives
dp Vv -a 6 1
—_— 4 + —
av ¢ Ve
when inserting into this equation

? = o \1 - ¥/¥, (36)

2 _5
(35)
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and its differential quotient

do _ _ %o 1 % (37)
W B Vi, "%
we thus obtain
Yo° P [ PV
etV -+ 2 [2) =0 (38)
ot Vet Ve ()
For ® =0 we have V = Wg; therefore,
2
%o -
" v + Yy - @ = 0 (39)
g
or
90° 2
=2 YO0 _ &
'%"2+ 2 +<2) (40)
When inserting equation (39) into (38) we obtain
e 2 2Y g (41)
& \/5(%)

Furthermore, since according to equation (39)
Po o
— = 1 « = o 14.2
Ve ¥\ ’ A Vg (42)

1+ Yy + (9/9g)% = 0 (43)

we obtain finally

or

¢ = Po\f1 - ¥/ ¥ (L)

This is the assumed velocity course per (32) or (36). With this we again
return to equation (32). When assuming generally such velocity course
with the compression of the spring strut, a second method is obtained for
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the approximative calculation of the force-deflection diagrams. For a
linear spring characteristic and linear damping with equation (32) we
have

P = Fy + cf +kvg\/1 - £/%, (45)

By setting the differential quotient to zero, one obtains

& _g_c_%o_ 1 (46)

ar of
g V1 - £/t

2
” fg<l - (2};;’2) (47)

When inserting this expression into equation (45), we obtain

or

H
il

2, 2
kVO
Pg—FO+cfg+hfc (48)
g
or, in the form written per my former report (ref. 5)
2., 2
9P
S, =0 + V¥, + (49)
g
g Wg

The maximum value of the spring deflection fg is determined from the
energy balance. First we obtain with x = £/fg

kvofg (50)

wiro

fg 1
fkvdf:kvofgb([ Vl-xdx=
0

This implies that the mean velocity v, between f =0 and f = f_, 1is

m g
equal %— vo. With
cf 2
JF = Fofg + —ég-
(51)
Jp =% kvofg
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is, furthermore

M_2
JF + JD = § Vo + (Mg - L)fg (52)
When combining the two last equations we obtain

2
§kvo-(Mg-L-Fo)

2
fg + Efg

.(XQ)2 =0 (53)

Cc

and finally

2
-32-kvo-(Mg-L-Fo) > [2xvy - (Mg - L - Fp)

£ = - ¥ (V_> +|3 (54)

g c c

Written in a different form, equation (5L) reads

¥ =-(E6cp -cz)+ @2+(—1f«sq>o-a>2 (55)

When calculating the approximate values Sg by equation (49) and

Wg by equation (55), and comparing them with the exact values (ref. 5,

p. 130, eqs. (13a) and (20)), it is found that with freedom from damping
(3 = 0) both values show perfect agreement. For 9 = 0.2 and O.4 fig-
ures 7 and 8 apply. It may be seen that for a« = O and o = -1, that

is, for 1 £ A+ o £ 2, corresponding to the actual conditions with

o ~0.5 and A =1, the errors of Sg and Wg remained below 1 percent,
and in the spring stroke determination for o =0 and 34 = 0.2 only
rose to 1.6 percent. For o = 1, the errors increase with decreasing 0>
which regions, however, are practically meaningless since, in the first
place the spring struts are always preloaded, and secondly, ¢o hardly
ever is smaller than 3 (ref. 5, P. 131, left column).

Thus, calculations may be made with the second approximation method
at least as long as more exhaustive test results from experts will place
the once-for-all necessary preliminary calculations of oil-air spring
struts on fully reliable foundations.
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In the next partial report the here obtained results shall be used
in order to gain a general perspective on the maximum forces, maximum
spring deflections and spring capacities occurring in the landing shocks
of oil-air spring struts.

Translated by John Perl
Lockheed Aircraft Corp.
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EXAMPLE OF AN APPROXIMATION CALCULATION

TABLE T

f F v kyv P J
mm kg n/s kg kg mkg
0 ko1 4.2 3,576 4,067 0
20 1,071 3.992 3,399 L, 470 85.4
Lo 1,651 3.751 3,194 4,845 178.5
60 2,231 3.473 2,957 5,188 278.8
80 2,811 3.151 2,683 5,494 385.6
100 3,391 2.771L 2,360 5,751 4o8.1
120 3,971 2.311 1,968 5,939 615.0

I1-15
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Figure 1.- Cutout of the force-deflection diagram between f;_4

and

f; and end-cutout between £_q and f, (linear damping).
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Figure 2.~ Cutout of the force -deflection diagram between f;_4 and

f, and end-cutout between f,._q and fp (quadratic damping).
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Exact values to
moximum force

6000 1 T ;
kg Linear damping—{L —" Z

5000 T§ ot 1

_ Quadratic damping4T] [
4 = r am l\r[‘gl

4 g /
000 4 | kv Exact values /
P ~ P, o of maximum ¢
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3000 W 2 /</ TERERE 7
No R ~Static characteristic g\;
x(\l g
2000 ; » 20
> F 4
1000 ;‘/ | /
%
| A 2
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f mm 165.2

Figure 3.- Example of the step-by-step calculation of the force-distance
diagrams with linear and quadratic damping.
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7000
kg
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5000 /
/
A
\. /// /
4000 — —
- ! /
3000 /
//
D y
2000 P +1r
/V
1000 }— '
1y
0 20 40 60 80 100 120 140 160 I724
f mm

Figure 4,- Example for the step-by-step calculation of a force-deflection
diagram with an undetermined spring chart and velocity-proportional
damping. Oil-air strut.




NACA ™ 1373

IT-19
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i Vp=0
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Figure 5.- Approximation calculation of the last time-period.
1.0 I |
\ rLinear characteristic line
-~ AN (Figure 3)
. |, Nonlinear characteristic line
08 N -
(Figure 4)
N
‘ N
 os AN
—
Eq 32: L . I/i-— )\
V/VO a VO fq \\ 1
N
04
0.2
0 0.2 04 0.6 o8
f/fg
. Figure 6.- Course of the spring compression velocity in function with

the spring stroke,
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Figure 8.- Exactness of the approximation formula (equ. 49) for determina-
tion of Sg.
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THIRD PARTIAL REPORT - THE LANDING IMPACT
OF OLEO-PNEUMATIC SHOCK ABSORBERS®

By K. Schlaefke

Summary: The stress-stroke diagram of an oleo-pneumatic leg under
the first impact at landing can be obtained by superposing onto the dia-
gram of the undamped compressed-air leg, the damping diagram according
to the second approximate method described in the preceding partial
report (ref. 1). The maximum stroke, maximum load, and efficiency to be
expected for various damping, 1ift coefficients, and heights of drop are
computed and represented diagrammatically for practical use. Lastly,
it is indicated how the newly introduced damping factor for oleo-
pneumatic legs can be determined by experiment.

The present report may be joined to the second partial report
(ref. 1) without further introduction. First to be considered is the
compressed-air strut. without damping, a problem which, in view of the
generally known principles of thermodynamics, presents no difficulties.

The natural frequency w has proved itself useful as characteristic
value of linear spring systéms because it enables the investigations to be
represented in generally applicable dimensionless form. But, since
is not a constant for nonlinear systems, a different characteristic
value must be looked for. As such, the theoretical maximum spring
travel or stroke fo appears to be the most suitable for oleo-pneumatic
struts. It is the theoretical stroke required to raise the force F from
the initial tension Fp to F = e On actually constructed struts o

ranges from 230 to 600 millimeters if one assumes, besides the limits
indicated by Michael (ref. 2), fg/fo 2 0.75 for the maximum travel fg.
The compression curve follows the law

F(fy - f)k = Fofok (1)

*"Zur Kenntnis der Kraftwegdiagramme von Flugzeugfederbeinen,
3. Teilbericht: Der lLandestoss von Glluftfederbeinen." Technische
Berichte, Bd. 11, Heft. 5, May 15, 194L, pp. 137-141.
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with
B =0 -V (2)
equation (1) becomes
Sp = o(1 - V¥ = oo, (3)

The energy absorbed by the compressed-air spring is

v -(k-1)
\l: SpdV = o (1 - i)_ T -1 0d5 (4)

the rise of the compression curve

— = ok(1 - W)-(k+l) = o¢3 (5)

The variation of the polytropic curve (fig. 1) should not be much
different from that of the adiabatic curve because the landing impact
is generally too fast for any appreciable heat flow. In the following,
k = 1.3 is assumed, which incidentally is the same figure used by Irmer
(ref. 3) and Hadekel (ref. 4) on the basis of experiments.

With k = 1.3, table 1 and figure 2 are obtained for the functions
%1, ©®p, and &3, in equations (3) to (5) with respect to V. It should

be noted that the expansion of, for example, ¢, in series

0= (1 -3 214 1030+ 100502 4 168ksV3 4 L L (6)
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is useless because this series converges very slowly for practical
values of ¥. For ¥ = 0.5 the error of the series value when breaking
off after the term of third degree is already almost 10 percent, while
for V¥ = 0.8 the value still amounts to less than half of the correct
value.

The compression fr under static load is obtained from the equation

1. 1.
Mg(fy - ) 3 . Fofo 3 (7

at

fr/fo =V =1 01/1.3 (8)

The relationship between . and o is shown in figure 3.
According to Hadekel (ref. 4) fg/fo is mostly equal to 0.75 and
fr/fg = 0.5 to 0.667; hence V.. = 0.375 to 0.5 and o = 0.40 to 0.54
according to equation (8) or figure 3. In the following o = 0.5 is

used. This is in full agreement with Michael (ref. 2) who puts
SFg = 2.2 to 3.5, while table 1 gives SFg = 3,03 for o =0.5 and

The energy balance for the landing impact of the undamped compressed-
air leg (® = 0) reads

fg
[ ¥ rar amgla s (1 - Ny (9)
0

or, in dimensionless form

Wg h
Ap =fo st\lr=f£6+(1-x)ﬂrg (10)

From the last equation follows

_¢)-0.3 _ -
(H/fo 5=0 = ° <l “’g()).?) - - (1 = Myg (11)
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Equation (11) can be solved only for A = 1 with respect to Vg.
Therefore, it is better to simply consider Wg as independent and

H/f, as dependent variable (table 1, columns 5 and 6). For round
values of H/fo the corresponding values of Vg are obtained by

interpolation. Incidentally, it should be noted that the @aximum
travel for the undamped spring impact (M=0) and H =0 is
Vg = 0.68066, a phenomenon already explained elsewhere (ref. 5).

The efficiency 1 for the pure compressed-air leg is

(l ' Wg>-o'3 - L (1 - Wg) B (l B Wg)l's

_ - (12)
-1. 0.3V
0'3"’g(1 - Wg) ’ ¢
by which equation column 7 of table 1 was computed.
This concludes the study of the undamped compressed-air leg.
TABLE 1.- FUNCTIONS FOR COMPUTING THE COMPRESSION CURVE
1 2 3 I 5 6 7
o o ) (H/fo) (H/£0)

v 1 2 3 lse=0, x=olsg=0, r=1] ™
0 1 10 1.3 0 0 1
0.1 1.1466]0.1070 1.6564 -0.0k65 0.0535 0.933
0.2 1.3365|0.2306 2.1719 -0.0847 0.1153 0.863
0.3 1.589910.3764 2.9527 ~0.1118 0.1882 0.789
0.k 1.9427]0.5520 L4.2091 -0.1240 0.2760 |0.711
0.5 2.462310.7704 6.4020 -0,1148 0.3852 0.626
0.55 2.8237(0.9024 8.1575 -0.0988 0.4512 0.582
0.6 3.2910|1.0546| 10.696 -0.0727 0.5273 0.534
0.65 3.914911.2340| 1k4.511 -0.0330 0.6170 0.485
0.7 4,783511.4500} 20.729 0.0250 0.7250 0.433
0.725| 5.356311.5766] 25.321 0.0633 0.7883 0.406
0.75 6.062911.7190| 31.528 0.1095 0.8595 0.378
0.775| 6.9528]1.8814) 40.173 0.1657 0.9407 0.349
0.8 8.1033|2.0690} 52.671 0.2345 1.0345 0.320
0.825| 9.6394}2.2896] 71.607 0.3198 1.1448 0.288
0.85 | 11.7783]2.5556| 102.08 0.4278 1.2778 0.255
0.875| 14,9285 [2.8670| 155.26 0.5585 1.4335 0.219
0.9 19.9526 13.3176 | 259.39 0.7588 1.6588 0.185
0.925| 29.0015 {3.9170| 502.70 1.0335 1.9585 0.14%6
0.95 | 49.1291 {4.8550 |1277.4 1.4775 2.4275 0.104
0.9751120.970 |6.7T47616290.4 2.3988 3.3738 0.057
1 0 © o0 Y o0 0
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The force-deflection diagram of the oleo shock absorber is
obtained by superposing the damping diagram on the static diagram
of the pneumatic shock absorber.

-The damping force D proportional to the velocity follows in
good approximation the law

D = DO\/l - £/t (13)

as proved in the previous partial report (ref. l,'equation 32, and
fig. 6).

With a view to employing the characteristic value f, for charac-
terizing the damping also, Dfo is defined as the damping force that

occurs in a landing impact from a drop of height £

Dfy = k 2gfo (1k)
Furthermore, since
Dy = k V2K (15)

the elimination of k from equations (14%) and (15) together with
equation (13) leaves

D = De \/H/%0 V1 - £/%g (16)
or, with
D
£
Do-sp L-3 (17)
Mg Mg

in dimensionless form

Sp = 8VH/To\/1 - Vg (18)
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According to the second partial report (ref. 1, equation (50))

Ap = d{?g S, a¥ = % /2%, (19)

with which the energy balance that serves for defining Wg becomes

-003
1 - -1
( 5) N ; sVi/Tovg = Eia- Mvg  (20)

Ap + Ap =g
F oD 0.3 o

For the numerical calculation, equation (20) is best solved with
respect to H/fO as unknown. By equation (11)

12
2
H _ Gllfg H S‘Vg
o |3 ~ \/éf§é>6=o ! <'3 (21

The root disappears for the values of & and Wé given in
table 2.

TABLE 2

EVALUATION OF EQUATION (21)

5 Vg H/fo |Figure k&

1.5 0.5805 | 0.0842 | Point A

3 0.3456 | 0.1194 | Point B

The curves have horizontal tangents in the two points A and B
(fig. 4). But it is to be assumed that here the approximate calculation
does not agree with reality; at any rate, there is no physical explana-
tion for this variation of the curve., However, since such small values
of H/fo are practically of no significance, the bare hint at the limits

of the approximate calculation should be sufficient.
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Thus, equation (21) is representéd in figure 4 with the reservation

that the anticipated maximum compression can be read off in terms of
5, A\, and H/f,.

In figure 5, the maximum compression for free-drop and weight-
balanced impact are compared; then Q(Wg) = Wg(x lj/Wg(x 0) Figure 5

similarly serves for defining the compression with weight-balanced impact
from the experimental values of the free-drop impact, as explained in
reference 5 for linear spring characteristic curves.

Before proceeding to the calculation of the maximum force, the
limits of H/fo and & up to which the calculation must be carried

out so as to include the partial range, are determined.

It has been established that f

ranges between 230 and 600 milli-
nmeters.

In the drop test the maximum height of drop H is about 1000
millimeters, equivalent to a meximum rate of drop v, = 4.43 meters per

second., Thus H fo is at the most equal to 1.67 for large aircraft and
rises to a little more than 4 for small airplanes. Consequently, it is
sufficient to extend the calculation to H/fo = 4, as already done in

the evaluation of equation (21) in figure k.

To define the average damping factor & +to be expected, recourse

b
is had to the damping magnitude for linear spring characteristic curves,
which as a rule lie at 9 = 0.25 (ref. 6).

Equating the two Initial dampings, the equation

- 2{)\/;1/_fg-\/2_n- - 8/fi/z, (22)

with n = 2.2 to 3.5 (ref. 2, p. 395) and fg/fy = 0.75 gives

2 5/_ 0V = 1.2 to 1.5 (23)
C Vo5 \/o S

2ﬂvow

299 =

Accordingly, the calculation was made with ©® = O,

® =1.5, and
® = 3, which surely includes the practical flight range.

The maximum force §S_, is obtained by differentiating the equation

S =8p+8Sp=o0(1 - mlr)'l'3 + 5\/H/foﬁ -V (24)
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with respect to ¥ and putting the differential quotient equal to zero.
Hence

Ws(l - ¥u/¥g)0 _ oy/k/20 (25)
(1 - wgw*/wé)2-3 2.60

This equation must be solved by trial. It is best to assume \lr*/\lrg

as independent and % as dependent variable, and ultimately define the
applicable value of W*/wg for the correct value & by interpolation.

For H/fy =1.5, A =1, o= 0.5, and Vg = 0.676, a table such as
table 3 is obtained, Interpolation for B 1.5 results in

V[ Vg = 0.9668
¥, = 0.6536 (26)
Sg = 2.319
TABLE 3

EXAMPLE FOR SOLVING EQUATION (25)

w;/wé 0.96 | 0.97 | 0.98

& =|1.594 [ 1.444] 1,23k

Figure 6 represents the drop diagrams for several values of H/fo
for ® =1.5 and complete 1lift relaxation, that is A = 1. The point
defined by equation (26) is indicated by the letter A. It is seen that
the maximum value formation starts expressly between H/fo =1 and
H/fo = 1.5, but that this maximum exceeds the initial force only when
H/fo still has risen a little above 1.5.

This is clearer yet in figure 7. The parabolas starting in the
point with the coordinates H/fo =0, Sg = 0.5 represent the initial
forces. For ® = 1.5 and A = 1L the steeply rising branch is valid
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from H/fo = 1.53 on. For such marked damping as & = 3 the maximum

force for the weight-balanced impact in the entire range in question is
equal to the initial force, while for the undamped impact from H/fo x 3

on, it follows the steep curve.

In figure 8 the maximum force with weight-balanced and free-drop
impact is compared. In contrast to the conditions for straight spring
characteristic curves, the quotients Q(Sg) = Sg(k:ll/gg(k=0) with about

0.4 are now only half as great as for the linear curve (ref. 5, fig. 7).
This phenomenon is comprehensible without further explanation by a glance
at figure 6.

The efficiency 1n follows from the equation

_ H/fo + (1 = MVg

- (e1)

1
gV

the interpretation of which is given in figures 9 and 10, The damped
diagrams in the practical range of damping are much fuller than the
undemped ones. Thus, for H/fg =2 and 3 = 1.5 the ratio

Q(n) = n(x l»/n(x 0) = 2,23, This also is explained by figure 6: for

H/fO = 1.5 the efficiency with 0.95 is nearly equal to unity, whereas
the diagram is almost a rectangle. At increasing values of wg, n

decreases rapidly; but to the free-drop impact there always corresponds
a greater spring travel or stroke V_ than to weight-balanced impact

(figs. 4 and 5). €

The energy absorbed by the strut at the first landing impact is
A =H/fy + (1 - Mg (28)

whence by equation (19)

2. 7o
Ap 36 H/fOWg

AT HfE + (1 - MY,

(29)

As indicated by the representation of equation (29) in figure 11,
at & = 1.5 air and damper oil perticipate about equally in the energy
absorption, and which is fairly independent of the height of drop H 1in
the practical range.
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Figure 11 and equation (29) show the way by which the damping
factor B can be determined by a test.

With full 1ift relaxation -

&Y A
€ _152 (30)

Simply measure the maximum compression Wg for a given height of drop

H, and calculate Ap by equation (4) or table 1. Then A can be
computed by equation (28) and with Ap = A - Ap the damping factor &
obtained by equation (30). This calculation is further facilitated by
figure 12.

With it, the present report is concluded., Whether I am successful
in extending the described approximate method to the calculation of oleo-
pneumatic legs with tires, I don't know, However, the present three-part
total report should, I hope, give not only hints to landing-gear diagrams
for construction and test, but also serve to stimulate further research.

Translated by J. Vanier
National Advisory Committee
for Aeronautics
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Figure 1.- The compression curves of compressed-air legs.
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Figure 2.- Functions for calculating the compression curve.
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Figure 3.- Initial tension and spring travel under static load.
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Figures 4 and 5.- Maximum compression of oleo-pneumatic legs at landing
impact.
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Figure 6.- Examples of force-stroke diagrams for & =1,5 and A =1
(complete lift relaxation) at several heights of drop H.
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Figures 7 and 8.- Maximum force of oleo-pneumatic legs at landing impact.
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Figures 9 and 10.- Efficiency of force-stroke diagrams of oleo-pneumatic
legs at landing impact.
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Figure 11.- Proportion of oil damping en=rgy to total energy.
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Figure 12.- Diagram for determining the damping & from the test values
H, vg and Ap/A.
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